skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rantakyrö, Friedrik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)
    The Gemini Planet Imager (GPI) is a high contrast imaging instrument that aims to detect and characterize extrasolar planets. GPI is being upgraded to GPI 2.0, with several subsystems receiving a re-design to improve its contrast. To enable observations on fainter targets and increase performance on brighter ones, one of the upgrades is to the adaptive optics system. The current Shack-Hartmann wavefront sensor (WFS) is being replaced by a pyramid WFS with an low-noise electron multiplying CCD (EMCCD). EMCCDs are detectors capable of counting single photon events at high speed and high sensitivity. In this work, we characterize the performance of the HNu ̈ 240 EMCCD from Nuvu Cameras, which was custom-built for GPI 2.0. Through our performance evaluation we found that the operating mode of the camera had to be changed from inverted-mode (IMO) to non-inverted mode (NIMO) in order to improve charge diffusion features found in the detector’s images. Here, we characterize the EMCCD’s noise contributors (readout noise, clock-induced charges, dark current) and linearity tests (EM gain, exposure time) before and after the switch to NIMO. 
    more » « less